Corticomuscular Activity Modeling by Combining Partial Least Squares and Canonical Correlation Analysis
نویسندگان
چکیده
Corticomuscular activity modeling based on multiple data sets such as electroencephalography (EEG) and electromyography (EMG) signals provides a useful tool for understanding human motor control systems. In this paper, we propose modeling corticomuscular activity by combining partial least squares (PLS) and canonical correlation analysis (CCA).The proposed method takes advantage of both PLS and CCA to ensure that the extracted components are maximally correlated across two data sets and meanwhile can well explain the information within each data set. This complementary combination generalizes the statistical assumptions beyond both PLS and CCA methods. Simulations were performed to illustrate the performance of the proposed method.We also applied the proposedmethod to concurrent EEG and EMG data collected in a Parkinson’s disease (PD) study.The results reveal several highly correlated temporal patterns between EEG and EMG signals and indicate meaningful corresponding spatial activation patterns. In PD subjects, enhanced connections between occipital region and other regions are noted, which is consistent with previous medical knowledge. The proposed framework is a promising technique for performing multisubject and bimodal data analysis.
منابع مشابه
Designing a Commercialization Model for Research Achievements at a Military University Research Institute by Partial Least Squares Structural Equation Modeling
Background and Aim: Today, in universities and research institutes, the lack of attention to commercialization makes it impossible or difficult to enter the markets for technology and research products. therefore, this study aims to design a commercialization model for research achievements of a military research institute. Methods: This descriptive-analytic study was done in a cross-sectional ...
متن کاملQuality-related inner-phase evolution analysis and quality prediction for uneven batch processes
In this paper, a new statistical process analysis and quality prediction method is proposed for multiphase batch processes. A two-level phase division algorithm is designed to capture and trace quality-related inner-phase evolution which in general goes through three statuses sequentially, i.e., transition, steady-phase and transition. Partial least squares (PLS), canonical correlation analysis...
متن کاملA Uniied Approach to Pca, Pls, Mlr and Cca
This paper presents a novel algorithm for analysis of stochastic processes. The algorithm can be used to nd the required solutions in the cases of principal component analysis (PCA), partial least squares (PLS), canonical correlation analysis (CCA) or multiple linear regression (MLR). The algorithm is iterative and sequential in its structure and uses on-line stochastic approximation to reach a...
متن کاملFunctional and effective connectivity of visuomotor control systems demonstrated using generalized partial least squares and structural equation modeling.
Tasks employing parametric variation in movement rate are associated with predictable modulations in neural activity and provide a convenient context for developing new techniques for system identification. Using a multistage approach, we explored the functional and effective connectivity of a visuomotor control system by combining generalized partial least squares (gPLS) with subsequent struct...
متن کاملPartial Least Squares Structural Equation Modeling Approach for Analyzing a Model with a Binary Indicator as an Endogenous Variable
In this paper, we focus on PLS-SEM’s ability to handle models with observable binary outcomes. We examine the different ways in which a binary outcome may appear in a model and distinguish those situations in which a binary outcome is indeed problematic versus those in which one can easily incorporate it into a PLS-SEM analysis. Explicating such details enables IS researchers to distinguish dif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Applied Mathematics
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013